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ABSTRACT

In this paper, ye present a notion of viscosity solutions of Hamilton- Ds

Jacobi equations for Neumann type boundary conditions (or more generally

oblique derivative).* In particular we prove the existence, uniqueness,

stability of such solutions and ye show that the vanishing viscosity method

yields such solutions. Next, we check that value functions of control

problem or differential games problem for reflected dynamical processes are

solutions in that sense of the associated Bellman or Isaacs equations.

Finally, we consider the ergodic problems.
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MOR UANZLY-7AC091 bQUATIONS

!4 P. L. Lions1

Introductionsa

in this paper, we consider the classical first order KIRLtore-JacObi equations

(1) (X,u(X),Du(x)) 0 in0

where u is a scalar function on 11 bounded mooth open set of ~.where Du denotes

the gradient of u and N the UHailtonian -is a given continuous function On

x It it"

we want to study how is is possible to define for solutions of (1) gsulan type

boundary conditions that is

(2) 0 on to

where a Is the unit outward norml to 30. Nowever, as it is remarked in P. L. Lions

* (1251, A. ISyab ri35), such a boundary condition Is not always possible and has to he relaxed

sonehow.

nscently, U. G. Crandall and the author to), 19) Introduced a general notion of

solutions of (1) (requiring only u 0 COMJ and proved various properties of these

solutions - called viscosity solutions - Including stability and uniqueness (provided

boundary conditions of Dirichlot type are imposed).* This led to a conlots treatmnt of

(1) with, possibly, Dirichlet boundary conditions and we refer to H. 0. Crandall, L. C.

Zvan. and Pe L. Lions 1711 P. L. Lions [261, P. 3. Souganidis (3711 a. Darlee (31; ff. Ishii

1 221, (231v n. G. Crandall and P. L. Lions (101, [11), (121, 03").

Or goal here is to adapt the notion of viscosity solutions of (1) in order to take

into account boundary conditions of the form (2). * Pughly speaking, we will present sm

C3=UIAM, Universit6f Paris-Dauphine, place do Lakttr* do fTssigny, 75775 Paris Cedex 16,

Sponsored by the iVaited States Army under Contract go. DA2900-C-0041.

The reader should be aware that this list to by no man* complete Il
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weak formulation (in Oviscasity stylew) of an equation combining (1) and (2) on N~ and

this will be interpreted as the relaxed form of (2). The precise definition is given in

section I where we also motivate and explain this definition In the light of the so-called

* vanishing viscosity method which here consists of finding u6  solution of the equation (3)

below and letting 9 go to0

our
(3) -ChU6 C+9C(' Du C in 0, 0 on Do

where HC N as £ 0+ (one can take R~ as well).

In section 11, we give saw properties of theme viscosity solutions of (1) -(2)

Including stability, and adaptations to Cauchy problems like

au{+ R(X,tu,Du) - 0 in Qx3O#T(
- (4)

F-0 on 39xO,?(, u(x,0) -u,(x) in 2

Sections III and IV are devoted to uniqueness, comparison and existence results which

* will be of a comparable level of generality to the case of viscosity solutions of (1) with

Q- I? (no boundary conditions).

In section V, we adapt the preceding results to more general boundary conditions

(5) yy)0 on3

where y Is a smooth vector field on 89 pointing outward i.e.

*(6) Iii > 0, WX e So, (n(x),y(x)) ;0 V .-

A it was remarked in P. L. Lions (251 for exit problems in optimal deterministic

control theory, the dynamic programming argents easily yield the fact that value

* functions are viscosity solutions of the related Beliman (or Rmilton-Jacobi-sellman)

* equations - see also P. L. Lions [271, (281. This remark was also applied to differential

qams by P. 2. louganidis (361,p L. C. Rvans and P. 2. souganidis [ISg N. R. Barron, L. C.

* Hyvan* and R. Jensen (41). We want to show in section VI that the value function of control

problems (or differential game problems) for solutions of ordinary differential equations

* with reflection at the boundary are indeed the viscosity solutions of (1) -(2) (for the .

Namiltonian N occurring in Sellman or Isaacs equations).

-2-
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Finally, section VII is devoted to the study of the so-called ergodic problemes here,

we study the limit as 9 goes to 0 of, say, (6uteu5 - u,(xo)) where x 0  is any point

In Q and ug is the viscosity solution of

C(7) N(xDu )+ Cuea 0 in 0,, - -0 on 0"

We would like to conclude this introduction by explaining our motivation for studying j
(1) - (2) The first one concerns optimal control theory whore state constraints are

imposed on the system. Then reflection at the boundary of the domain defining the

constraints Is one possible way to "realise the constraint e and in many applications this

Is actually done (specially in optimal stochastic control problems which correspond to (3)

and C. going to 0 corresponds to the Intensity of the noise going to 0). But also from

the 11D view point it is quite natural to try to analyse what happens when e goes to 0

in (3). And this Is very much related to the question of large deviations of reflocting

diffusion processes (sae Anderson and Croy [1) for some results on this problem and L. C.

Evans and N. Ishii (171, W. f. Fleming and P. N. louganidis [191 for relations between the

vanishing viscosity method, largo deviations and viscosity solutions).

ws want also to emphasise that solutions of problems like (1) - (2) lead to solutions .-

% of hyperbolic systems of conservation laws and that boundary conditions like (2), (5)%

correspond then to some Dirichlot type condition. Indeed if u solves (formally) ,

W + ,(xtD) -0 in Rxao.Tlt -0 on 80.,t

- where Y may even depend on t if we wish -, than p D u solves

+t . {I(x,tp)) - 0 in x]O,?[

(p,Y) - 0 on N]0,![ p

and since such boundary conditions for hyperbolic systems are natural, this motivates the

study of Nsann boundary conditions for Nmilton-Jacobi equations. Let us mention at this

stage that the case of one-dimensional scalar conservation laws is studied in C. Dardos,

Le u u and edoloe [21.

e-q

.%"
-3-
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Let us also mention that some particular Case of (1) - (2) are studied in mrch and

Goldstein (6), P. L. Lions (251, A. Uayah (351.

Finally, we would like to point out that we restricted our attention to the case of

bounded doains 0 but we could as well treat unbounded domains (as for example half-

spaces) with similar ideas, combining (if necessary) the techniqus below with those

concerning unbounded viscosity solutions in IF (see N. 0. Crandall and P. L. Lions (101,

(11), (121, 3. Ishli (221, (231).

I. Definition and Justification

Let a be a bounded smooth open set In I and lot E(x,t,p) e C(F x i x I?). w e..

denote by n the vector field of unit outward normal vectors to 30 and we are going to

define "viscosity solution of (1) - (2)0.

Definitions: let u 6 c(Q). We say that

.... I) u is a vicosity subsolution of (1) - (2) if for all * 6 C1{() the following

property holds: let x0  be a local maximum of u - In A then we havet. ( 0 ,u(x 0 ),D#(x 0 )) 4 0 if x0 e0

N(x 0 ,u(x 0 ),D#(x 0 )) 4 0 if x It0 and (x 0 ) 0

ii) u is a viscosity supersolution of (1) - (2) if for all * a C1(6) the following

property holdst let Xe be a local minJtm, point of u - in A then we havet (x0,u(x),D#( 0 )) ) 0 If 0 .
(9)

(x 0 ,u(x 0 ),D (x 0 )) ) 0 if x0 6 59 and n (z 0 ) C 0

iii) u is a viscosity solution of (1) - (2) if u is both a viscosity sub and super-

solution of (1) - (2).

Remarks: 1) Of course, (8) - (9), whenever x 0  9, are nothing but the usual viscosity

formulation of (1).

ii) It is a straightforward exercise to check that one obtains equivalent formulations if

, 
.
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we replace * C1 by *@ C2  or *6 C" and local maximum (reap. minimum) by local

strict, global strict, or global maximum (rap. minimum).

III) As we will "e below, an equivalent formulation of (8) - (9) which allows 'k (310) < 0

(or > 0) is possible (in addition it is intrinsic in the sense that no test functions are

necessary).
2U

Theorem 1: Let u~ 6 C() be a solution of (3), assume that converges uniformly

to U on A x [-3,+RJ x 3R (VR < ) and that for some sequence e I going to 0 U n

converges uniformly an 0 to some u. Then, u is a viscosity solution of (1) - (2). .-

Proofs we already know from the usual properties of viscosity solutions of (1) (see [9])

that u is a viscosity solution inside 0. Therefore, we only have to prove (8), (9) in

the came when xO e 30. We are going to prove (8) with xO e 32, the proof of (9) being

similar. Thus, let xO be a local strict maximum point of u -*where xO 6 30,

*~ C p 0. We then choose 9~

an on 3,90 on 30, >0 in Q

obviously, for any 6 > 0, u - 6# 8 still has a local strict maximum point at X0.

Banco, for n large enough, u5 - 8 has a local maximum point xn in A and

nn

Ou5
0 ( x) (x C) +8

and the last quantity Is strictly positive for n large. Next, since xn e A, we deduce

He (xn.ut Cxn),D#xn ) + 6D#(x n) C £nCA#xn ) + 69xnd)
n n

where we used the relations D#Cxn) + 6D#Cw DumTh (x ), Au (x ) C 4C(x )+ 8A9(x11n r n C n n n
n n

Letting n go to -, and then letting 8 go to 0+, we conclude. -

We now present some equivalent formulations of (8) - (9). To this end, we consider

(following (71) the subdifferential and the superdifferential of v 4! c(Q) at x 60a

given respectively by

1%1
V.

..............................-...



DV(X) - (e n o1, i inf {v(y)-v(x) - (9,y-x))Iy-xl"1 > 0)
741 yo,

D +V(X) e (C 6 lim sup (V(y)-V(X) - (E,y-x))Iy-xIl -C 0)T,% yeU :.i

oberve tat (as in (71), if v- has alocal aximum at so e where *Is
+ -

differentiable then D(x ) 0 D v(x ) and that if & e 6 vlxo1 , there exists # e C (W)

such that v - * has a global strict maxim m at x0  and D#(x O ) = .-

We have the

Theorem 2. Let u e C(5). Then, u is a viscosity subsolution (resp. supersolution) of

(1) - (2) if and only if( Vx e 12, VC e Du(x), K(x,u(x),C) 4C 0

Vx e 3, vC e D u(x), inf R(x,u(x),C+9(9,n) n) ( 0

(reap.

vx e 0, v% e D'u(x), n(x,u(x),C) ) 0

(9') +.
vx 32, A e 'u(x), sup (x'u(x),.-9(C.n) n) ;0 0

Squivalently, u is a viscosity mubsolution (reap. supersolution) of (1) - (2) if and only

if we have for all # e c ()

Sat any local maximum point x0  of u - *. we have

)(xou(xo),D#(xo)) ( 0 if x0  a

0 0 0

inf (xou(x),D(xo) + 9( (x 0 ))n) 4 0 if x0 e 320 0" 0 41 0"

(reap.

%5.%.
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1at any local minima Point x0 ofu-* wehe

su W(x01u(x ),D#(X0  - e(,11 (3x0))*n) 0 if X0 6 30)

Remarkest

i) As usual, we may replace *6 C1  by *6 C. Cr and local by global strict, local

strict, or global.

ii) in what follows, we will obtain use of the function d(x) - dist(X,30) which is

smoth - say C2 
- near 0 ad which satisfies VI - -n on 3') - see for instance

J. Serrin 136), D. ailbarg and N. B. Trudinger (203. When we deal with points x of 30

the fact that d is not smooth globally on i will never create any difficulty since one

can always smooth* d in the interior, while keeping It positive.

iii) let us observe that if C a Du(x0 ), x0 0 30 then C-Xn 41Du~ for all X 0 0.

*The proof of Theorem 2 relies on a general extension leaes of viscosity solutions of

Lawns 3t Let u a C(S)) be a viscosity subeolution (reap. eupersolution) of (1). EAt

0 0 Oil and let CS Du(x0 ) (rap. D7u(x%)). We then set

(10) 1a- uP{A 0 E +kn(x) 6 Du(x0

and thus 0 4 A 0 4

* (romp.

(1~ - up(A 0, C-n(x) e Du(x0 )

Then, if A0 < we have

R(x0 , U(i,0 ), C + A 0n(xo)) f. 0

* (reap.

II(x 0 , U(X0 ), C-Aon(x0 )) )0 0)

-7-
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We first apply Lame 3 to prove Theorem 2, and then prove Learn 3. It Is clear that

(80) (reap. (90)) is equivalent to (8') (reap. (9')). Hence, we just have to prove that

(8) implies (18'). 2hus, let x 0 e a0 and let t e Du(x). If (n) A 0, we have

nothing to prove, hene we assume (Cn) < 0. Two ca es are then possibles first, if

'0 
• (.n)', e see that + ( ,n)F 6 T(x 0 ) and we conclude applying (8). Notice that

in this cae (8'1) holds with 8 - 1. if A 0 
< (4,n)', we apply Leas 3 and we conclude

since in this case

C + 0nix 0) - + 8(9,n)n

where S 6 [0,1 is given by 8 - A0/(C,n)"

We now prove lam 31 as A0 
<  a and Du(x0 ) is closed, C+A0 n(x0 ) 6 Du(x0). lat

e 6 c (Q) be such that

#(x0) - u(x0), D*(x 0 ) - + A0n(x 0 ) * , (x) u(x) Vx 0 K0

Then, for > ) 0 small we set

Q8- (xo,) a , P( 1 - lnf1#(x)-u(x)/1x-xof - 6, x ] .1'

Choosing a(*) - Nin(, p(6()/2), we claim that u - + a(5)d has a local minLa"m

inside Indeed let x6 be a maxima point of u- + a(6)d over Q If x6 e 30,

then u(x6 )-*(xa) ), u(x)-V(0 ) and thu x - s. Dut this would yield that

D#(x 0 I + ()n(x 0 ) e Du(x0) contradicting the choice of A0 " Therefore, x6 20. If

1x8-x 01 6, this watild imply

u(x0 ) - Ox 0 ) ( ux 6 ) - O(x) + G M)dlx6 1 ( -1(6) + 66() < 0

again a contradiction. And we have proved that xt 6 Q6. Since u is a viscosity

subsolution of (1) we deduce

U(x 6 1u(xj),D#(x6 ) - (6)Vd(x a 4C 0

and we conclude letting 6 go to 0+.

11. Properties and extensions.

First of all, we would like to mention that many of the properties of viscosity

solutions proved in N. G. Crandall and P. L. Lions [9)r M. G. Crandall, L. C. Rvans and ..-

P. L. Lions (71 P. L. Lions (251 have their counterparts in our setting. We will only

J%
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make two remarks, the first one concerns differentiability points of a viscosity sub-

solution lying on a0. More precisely assume u e C() is a viscosity subsolution of

(1) - (2) and that u is differentiable at x0 e 30. We then observe that

+u -- )nlx0 1 / 1 ) 0}u X )0) 0)(Du'' .'

au
Therefore if we denote by DTu(x0 ) - Du(x0 ) - - (x0 )n(x0 ), we deduce from condition (8)

if au (Xo) o 0, H(xo,u(xo), Du(xo)) f 0

(12)
au au

if W- (x0 ) ( 0, inf{H(xo,u(x0),DTu(xo) + An(x 0 )/A e [ n (x0)'O]} e 0 .

Clearly, if u is a viscosity subsolution of (1), u e C(F), u is differentiable at each

point x0  of 3A and if (12) holds for all x0 e 30, u is a viscosity subsolution of

(1) - (2).

We now turn to a stability result

Proposition 4: lit (uk)k e c(Q) be viscosity subsolutions (reap. supersolutions) of

(13) Hk(xuk,Duk) - 0 in 0, i--0 on a0 . ,'<I

Assl that uk converges unformly on F to u and that Rk converges uniformly on ...-

X [-R,+R] x i(Y < -) to H. Then u is a viscosity subsolution (reap. supersolution)

of (1) - (2).

Proof It is basically the sme as in (91, (7]. We just have to prove (80) when x0 e 3n
1-.

is a local strict maximum point in 0 of u - * with # e C (N). For k large enough,

uk - has a local maximum point xk in 1 and xk  x,. Therefore, we find

H ~k~.),#(Xk)) 4 0 if Xk e 0
uk  + haasx

(14) (~Xk,Uk ),D+(Xk) + 0k( (xk))'nlXk)) C 0 if x e 3n

for scm e (0,1). Without loss of generality we may assume that 6k e e [0,1 and 0

we find (86) passing to the limit in (14).

We next want to explain how one adapts to the definitions to cover situations like

N
problem (4): let H(x,t,s,p) e C(ul x [0,T] x R x R ), we wish to define viscosity .

-9-
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solutions of

(15) H(x,t,u,u) 0 in x O,T,( au 0 on SaxlO,T[ "

before giving the easy analogues of the preceding definitions, let us point out that (15)

is a very special case of (1) coupled with a Neumann type boundary condition on some part

only of the boundary, while on other parts Dirichlet boundary conditions are assumed (here

initial conditions). Let us mention that we could treat in much greater generality these

* mixed problems but we will skip here these straightforward extensions.

', Definitions: Lt u e C(AxIO,T[}. We will say that u is a

i) viscosity subsolution of (15) if for all * S C1 (AxO,T[) the following property

holds: at any local maximum point (xot O ) of u - on AxJO,T( then we have

at (Xoft) + lxo0 tou(xo0 to),D(xo,to)) I 0 if x0 e -

; ~(16) ::

( t x It )+ H(x It ,u(x It ),D#(x It )+ 0(Cx It )r-nfx ))C0 if x20 32
a~t 0 0 0 0 0 0 0 0 an 0 0 00i !-

," for some 0 e [0,11.

ii) viscosity supersolution of (15) if for all # eC (A [0,T]) the following property

-. '" holds: at any local minimum point (xo,tO ) of u - * on Zx]O,T[ then we have(P ! (x0 ,to) + H(x0,t0,u(x0,t01O) (x0,t0 j) 0 0 If x0 e 0.
A (17)

rAt- x (oto + H(X oto'U(Xo'to),D(Xoto } -t(At (X ,t )) n(x0 ) 0 if x e ""

13 t 00 0 0 0 0 0 0 an 0 0 0 0

for som e [0,11.

iii) viscosity solution of (15) if it is both a viscosity subsolution and supersolution of 12
,, (15).

Remark: Exactly as before we may replace C
1  

by C
2 , 

C7, or CI( x [0,Tl; local by

global, global strict or local strict.. . We could also use the analogues of (8) - (9).

Finally, one can give a definition in terms of sub and super differentials only as in

Exactly as in [91, (7], its is useful to extend (16), (17) on 2 x (T} as follows

Proposition 5: Let u e C(Ox]0,T]) be a viscosity subsolution (resp. aupersolution) of

-10-
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(15. Ten or ny C C(AxO,?), f C.?) is alocal maximum (rasp. minimum) paint

of u -*in Qx)O,TJ then have

!k (KI) + H(x,?,U(X,T),D#(X,?) )0 0 if x e 11rat
CX,T) +' U~x,T,u(x,T),D4(X,T) +. *c!t CX,T) )n~x)) 4 0 if x e

at anL.
for som e 0,11 (rap.f iT C ) +' H(X,,U(X,T),D4'CX,T)) 00 if x e 9

at
(19)

Cx T) + H(x,T,?,T*).D(X,2) 0& *(XT ))+'n~x)) )o 0 if x e 0
at an

for som 8 e 01)

Proofsa Again, it is almost the same proof an in 191, (71 so we will just sketch it.

Without loss of generality we may assum that CX,?) e aa x (T) is a local strict maximum

point of U * on ix]0,?1 where # e cI (OxJO,T1). Then for C swall enough

u _t-~ has a local maximum, paint C6 t) in Ex]0,T( such that X. + xv t5e ?

Using (16), we find

S+ at £ t )+t 5,u(xett ),D#(X It6  o if x. e8

C +A Ix t )4.H(xCt ,u(cv t ),D#(xc*t )S(t(x ,T)n(x))(0i a
2 at eg C £ C Cc Can gV C £txea

for some e~ 6 0,11. and we conclude easily letting t go to 0

Remarks Dreotly as In section I one any prove that if there exists u. e c2' (O OTE)

solution of

aug au5
at Ch + R ( ,t,u Du5  0 in Ox]O,T(, C.w 0 on a x O T

where 5 g converges uniformly on compact subsets of lx]O,T(x3 W3 N to H and ifu
n

converges uniformly to u on compact subsets of Ox] 0,? E f or some sequence c. + 0

then u is a viscosity solution of (1S).

ie.
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MI. Unueness6 rsul~ts.

f. begin with uniqueness results concerning viscosity solutions of (1) - (2). we vil

us the following asumptlons

(20) .(xtt,,(x-y)) - h(y,t,(x-y)) w(Al~xY 2 + Ilx-1)Y,)x @9,

for It - , A 1, andwhere u(s) 0 if a 04-

(21) VR < W. YR > 0, U(xtp) - h(xIesp) Y it-) if -R 4 a t R 3

f22) alp n(x,1:,p) - N(x,t,q)l/x 0 DO, It) 3 R, Ip-qI 4 C) * 0 an C * 0

for all] Rt < .. ,

Then our main uniqueness and comparison result Is the

Theorem 6, Let Hg C(S) x [-3, it] x ;R )(WR < -) satisfy (21). Let u, v e C(F) be

respectively viscosity subsolution of (1) - (2), viscosity supersolution of (1') - (2)

* where (1') is the equation given by

(1') R(x,v,D,) + f(x) - 0 in -.

and f e C(W). Then, if we asun either that (20) holds and 0 is convex, or that (20),

(22) hold or that u (or v) e Wl'(8), we have

max (u-v)
+ C- max f+

Y

where y -y and 0 max(lu'lv*) "

Proof: Of course the proof follows the corresponding proofs In (71, (9) the main changes

being at the boundary. Hence, we consider as in (71, [91t N > Rol e C"0),

12
0 C C 1, 6(0) - 1, 0(t) - 1 - for t small, 6(t) < 1 if t 0 0, am "i [-1,] .11:

2

0 (p) - 0(IpI/0) for p 6 If e > 01 w(x,y) - u(x) - v(y) + 3M *i (x-y) for x,y . .

may assume that L - max (u-v) > 0 so that max w )o34 + L ) 3K. Bence, If (xy) Is a

maximu point of W(x,y) on 0 x F we deduce

e- 6 Supp S, and thus 12I1 C c

in fact, we have

,12,
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3H 09(X-Y +ux -(X v(X) + %(C) Ma x a 3H + L ,.:.,

where iv in a modulus of continuity of v, and thus we deduce easily from the property

of 0 that -.! -

(23) ( c), VO (;4y) - -

As in the usual uniqueness proofs, we observe freezing y at y, reap. x at x that

, = -314VO(x-y) e D u(X) n D v(y) (even if x or y e 3a). Th refore applying the

definitions and assumptions

fl~~u~),~) 0 if xc e

(24)--
2H(,u(x), + -(C,n(x))'n(x)) ( 0 if x0 30, for some 0 e 10,11

H(y,v(y),C€) ) 0 ify a

(25)
N(y,v(y),C¢ - O(Csn(y)) n(y)) A 0 if ye 32, for same 8 6 [0,1 .

Next, if 0 is convex, we observe that

(9,¢,n(x)) - 3K(x-y,n(x))€ • 0 if xo eO, y e

(Cen(y)) - (x-y,n(y))€2 0 if Ze, y en

Bance the cases when x or y belong to 30 do not modify the usual proofs and we

conclude.

On the other hand if Q is arbitrary, then as it was observed in P. L. Lions (29),

P. L. Lions and A. S. Imnitman [331 there exists CO ; 0 such that for all z1,22 e

(26) (€l-z 2,n(zl)) ) -co1l-z21
2  if z1 e Dg

Using this remark we deduce from (23)

2(,,nx) -C6()2 if ; e (ai ,n())C"2  C 06(c)
2  if y • 3y .e W

Therefore we see that the additional terms in the Hamiltonians due to the possibility of

finding x or y on 32 go to 0 and using (22), the usual uniqueness proofs still-

apply.

-13-
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Finally, if u (for example) is Lipschitz on A. then we observe that

L + +s6cXy) * clx-.yl ) W(xoy) - Max w ' Max w(wx) ) 3H .L
xvy

and this combined with the properties of 0 yields

Therefore - 3X(z-y)/c 2  remains bounded while ( ,n(x)) (reap. M VAnDy*) go toiC

0 if x8ze (reap. y e 3 0) as £ goes to 0 as we saw before. it In then easy to

* complete the proof.

Remark, It is not surprising to -s that in such problems the convexity of s simplifies

matters. since (1) - (2) is intimately connected with control problems of reflected &

processes (see section VI below) such simplications have to be expected in view of the %

works of A. Densonssan and 3. L. Lions 1511 R . Tanaba (391s P.L. Lions, J. . Nenaidl and

A. S. Sanitmen (34).

We have proved the comparison result under three sets of aesomptions It is possible,

however, to unite them in a single statement involving and rather technical condition.

With the notations of Theorem 4, let a he a modulus of continuity of u (or v, choose

the best onel), denote by t6  the maximun solution in )O0.l of

(27) 0lt l - t.

observe that t "  * 0 as C goes to 0. Then w will assume

lim .up(H(y,t, - - 0'194 .,n(y)) (y)) - W(x't, -
e+g

(28) X-v
+ 0(-,n(x)) n(x))/lxO) e Qx(0) or (x,S) 0 30 x 10,11s

(y.S'e 6 Bx(O) or (y,S') e 50 x 1,18 lx-yI ( to, ItI 4 ) - 0

for all R < . The proof above given then

Corollary 7t Let R 6 C(B x I-R,+R] x %)(VR 4 -) satisfy (21). Let u,v 6 C(M) be

respectively viscosity subeolution of (1) - (2), viscosity supersolution of (11)- (2).

Let f e C() and set R- max(lul.,IvI), y - and let a he a modulus of
0

.4 % .% .. ..
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continuity of u (or v). Then, if (28) holds, we have

(29) max(u-v) °  max f+

Remarks: Of course (28) is awkward. On the other hand it holds if (20) holds (condition

which was introduced by R. Jenson) and 0 is convex, or if (20), (22) hold, or if u is

Lipschitz since in that case It.4 (Cc. In addition if u e C O0, for some ae 10,11

then ItcI 1 cc/(2-u)3  for example if B(x,t,p) - *(x) 1 pl1  + Yt with m > 1,

* U w"(0) then (22) holds only if 4 - 0 on 39 while if u e C (28) holds if

a •(m-1)/.

We will not state any results on Cauchy problems like (15)1 lot us mention that if

uv e c(f x (0.?]) are respectively viscosity subsolution of (15), viscosity supersolution

of

v + H(x-tv,Dv) + f(x at) 0 in 0 10M , 0 on K x 0 T [
(30) tf

then provided the analogues of (20), (21) (with now y > " .), (22) (or even (29), where

the inequalities are uniform in t e [0,T), hold then the following inequality holds

max(u-v) W elt max(u-v)+(0) + ft max f+ls)eygd.

IV. Rxistence results.

For problem (1) - (2), the main existence result is the followinq:

Theorem 9: Let H e c(5 x (-R,+R] x .). assem there exist ue () viscosity

supersolution, reap. subsolution of (1) - (2) and assume that H satisfies (21) and either

(20) and Q) is convex, either (20) and (22), or that

(31) H(xt,p) + as IPI 4-, unformly in x e A, t bounded

Then there exists a unique viscosity solution of (1) - (2).

Remarks: i) If In (21), Y¥ is bounded away from 0 independently of R then one may

choose u - c. u - -c for some large constant c.

ii) The uniqueness part of the above result is contained in Theorem 4 since (31) yields

that any viscosity subsolution (in 2) of (1) belonqs to w' () (see (9], (25] for a

-15-
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proof of this fact).

Proof: To simplify the presentation, we will make the proof only in the case when

U(x~t,p) - N(x,p) + At, with H satisfying (20) (or (20 - (22), or (31) ... ) and A > 0.

Our first observation concerns a priori estimates on solutions u of (1) - (2). By

comparison with u and u we obtain uniform bounds. Now, exactly as in H. Ishii 123J

*and M. G. Crandall and P. L. Lions (111, one ay obtain an estimate of the modulus of

continuity of u: Indeed one checks easily that v(x,y) WOu~) u(y))+ is a viscosity

-' subsolution of t(H(xD xv) -H(y,-D yV)) A 0 + AV 4 0 in 2 x 9 L

av 0on 3agxa)

*Then we claim that under the assumptions of Theorem 6, we can find for all C > 0

constants C > C o , 'v - (c) e imi1 such that

2 (X,y) - + CF-y1

is a viscosity supersolution of (32), where Y~ e 10,1E depend only on the moduli

*involved by (20), (22). Formally, one checks this claim by computing

(H(xiD~ z -H(y,-Dzx ))+AXz aAt + OFjX-fyj +

-wcylx-yIT + Ix-rI) . VX,yea

*and if for example x e g, y e

inf (OA(B(x,D :**(.5)n(x)) - (y,-D z,))) + Iz e
en yC C

ao Ac + XAEjx-yjY - w(Cvix-fy~ + jx-yj), if 2 is convex

Xe A+ X Acx-yjY - w(Uvtx-yI1 + Jx-yj)-va(Cyjx.yI1 )

where C0 is given by (26) and ya Is the modulus given by (22). The remaining cases

x e A, y e au or x,y e 30 are estimated In a similar way. Then, one concludes easily as

in N. G. Crandall and P. L.Lions (Ill. In conclusion, if 2 is convex and (20) holds, or

J%
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if (20) and (22) hold, we have obtained bounds and a modulus of continuity for any solution

of (1) - (2) which depend only on the moduli in (20), (22).

Therefore, by easy approximation arguments, we may assume that f(xp) Is smooth and

that R is Lipschits on 0 x I F . If (31) holds, since one deduces from (9), (251 easy

Lipschits estimates, getting existence in that case is also enough to conclude (as usual

for existence results in Ramilton-Yacobi equations). Then, the particular case is treated

via the vanishing viscosity method

au
(32) -hu z + H(xDu¢) + u .0 in , u6  c 2 (C , C = 0 on 30

The existence of u Is insured by standard results on quasilinear equations (see for

example (201)t recall indeed that R has bounded derivatives in (xp) on 0 x d. g
"

Using maximum principle, one obtains uniform bounds on u. 7b obtain V 1 (2) bounds, we

may use the methods of P. L. Lions (301, (311 based on Bernstein ideas, indeed, if

v C 2(1) satisfies (2) then

where C1  depends only on 2 and C1  0 if A is convex. Then, we consider a function

2-e 6 C (d) satisfying

(34) > 0 in , -"1  on 30

(take for example -
C d  where d - dist(x,)9) nearby 301). Ws finally set w -%

12  and we compute

-CAW + T- Vw + 2)w -C -2-1 u, kU +,

+n
2
K I In 2, T -4 0 an 0 u

a an ,"

where N depends only on Q# V and C depends only on 0 and 1 j 1 -  Applying

Cauchy-schwarx inequalities and using the maximum principle, we nee that for X > A1I

w 4 K on0

where I is independent of € and X depends only on U, p sing Theorem 1, we

deduce from these estimates the existence of a viscosity solution u of

-17-
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W(3x,00) + (-%+A) X 1f In g .! o 0 on IQ

where f 0 IF 9) But them Theorem 6 Yields that if Ulf u2  are the solutios.

-. ~corresponding to fl, f 2  WO have....

1 21 'I1 - 21

Therefore, by an esy application of the usual Iteration method, we finally obtain the

existence of a solution u of (1) -(2).

ge now turn to sowe regularity resultat

Corollary 9, xet 360 C(S) x (-3.*RI i S)(WR < satisfy (21). let a a C(F)) he a

*viscosity solution of (1) -(2). Set RO Iola, y y WeV finally asoe that II

* satisfion

*(35) I3(x't'P) - (y.tp)I ( e1 x-YI IPI + cix1-rI. Vs y 0 i Vp

for all Iti 4 a0, for same constants Ci, C ), Os and that 0 Is convexs or that N

* satisfies

- ~ (36) IU(x't'p) - (x-tlq)I 4 C2 1p-q[. Vu e 32, Vp, q 0 Of witj 4

*In the first case we set 0 - Y/C1  if Y < C1 , 0 arbitrary In 10,11 if y - C1 , 6 *1

* if y > C1 while in the second case we set 6 - /(C 4C C ) If Y < C14C2C0, S arbitrary

* in 10,11 if y - 1 CC-1i C14C 1 CC - Where C0  Is given by

(26).

Proofs oe just checks that Ci x-yl Is a viscosity supersolution oft(fl(x~u(y).Dxv) - U(y,u(y), - Dyv) AO + yr 0 0 in a x 9

3v.0 on l(SaxQ)

*while (U(x) -u(y))+ is a viscosity subsolution of the sam problem. We then conclude by

an application of Theorem 4.

we now conclude by stating the corresponding results for the Cauchy problem (15).

Let T e 10,481, we will say that R(x,t,s,p) e C('5 x 10,T) Is a x a satisfies (20), (22)--

% 
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if (20), (22) are satisfied uniformly in t 0 (0,]. Finally, we will replace (21) by

(21') 3Y > -, H(xvts 2 #P) - H(xtslp) 
)  

(82"01)

for all x 6 Q, t 0 (0,T], @1 4 s2, p e I and we will use the assumptions

(35') H(x~ts'P)- H(yettep)l 4 C1 1x-yj Ipi -C, Vxyptp

for 18 4R

(36') f.(x,tos,p) - E(x,t,s,q)f l c p-ql, x R ip vpqt

-4for ml 3, wh R CR t~ are various positive constants.
N

Theorem 10: iet u0 e C(O), let R E C(Q X 10,T] X R x R ) satisfy (21'). we aseme in

addition either that (20) holds and 12 is convex, or that (20), (22) hold, or that H

satisfies

(37) H as fpf * - uniformly in x e 5, t e [0,T], a bounded

(38) H(x,tls,p) - H(xt 2 ,l,p) ; -CR(tl-t2
)+  for lei -C R

for all x e 15, p e 0, t e (0,T]. Then there exists a unique solution u of (15) in

C(16 x [0,T]) satisfying: u(x,0) - u0 (x) in . In addition, if w assume either (35')

and 12 convex, or (35') and (36'), or (37) and (38), and if u 0 e w1 (9) then

u e w'(0 x ]0,T[).

V. More general boundary conditions.

we consider now the case of the general boundary condition (5) where y is smooth

(say C
3
) and Y satisfies (6). We first define viscosity solutions of (1) - (5).

Definition: u e C(m) is said to be a viscosity subsolution (reep. supersolution) of (1) -

(5) if we have for all e c (IF)

at each local maximum point x0 of u - * in 1, we have

(39) H(x0,u(x0),D#(x0)) ( 0 if X0 e 12 ..

H(xu(x0),D#(x0 4 0 if x 0 e 0 and (x 0

(reap.

-19-
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at each local minimum point x 0  of u -*in 0, we have

(40) HOx0 u(x 0),D#(x 0) 0 if x 0ea

H~(x05u( 0 ),D#(x 0) 0 if x 0 SQ3 and lj. (x 0 40)

Finally, u is a viscosity solution if it is aviscosity sub and supersolution.

Remarks: i) one obtain* equivalent formulations replacing D# by e 6*0u(%1) (rap.

D-uxo),or *e cl by *e C2, *e Cm. or local by global, global strict or local

7.strict. Finally, one may consider only *e c1(Q) such that 0 on 30 (romp.

4 0 on 30). Arguing as in Theoremt 2, ws also remark that u is a viscosity sub-

solution of (1) -(5) (reap. supersolution) if and only if we have

{vx e A1, Y4 e D uwx, R(x,u(x).C) 1c 0

(391)i 6x e , vc e D u(x), inf H(x,u(x), C + 6(CY) - ) n ( 0
OICOCI(n,Y)

(reap.

vx e a, v% oSu(x), N(x,u(x),c) o

(40' eV A Q e D)u~x), Sup H(x,u(x),9-8(C,)(,y) -J~~ 0)

(ii) Exactly as in sections 1,, one may prove stability results and the relations of the

above definition with the vanishing viscosity method.

-20-
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we now turn to existence and uniqueness reaulta: first of all, followingP.LLin

129), P. L. Lions and A. S. Binitmn (33), we Introduce ajj(x) =ajj~x) (smooth on

Say cg(ft?)) satisfying

(41) v > o, Yx e F?, (a 1 (W) ), VI
n

(42) Yx e So~ aijWxyr(x) - ni(x) for 1 4 i 4 N - "*

Clearly if we bad y~ - n, we would just take ai1(x) - 6ij Next, the matrices aij(x)L

-. induce a metric on R" defined by

dxy) - inftJ0Cai (Mt))l (of~ (t)I)/ 6C(01:

0)-Y, 1)-X)

and L(XY) -d 2(x,y) satisfies~e 1 
C01I1~)

Then it in well-known that for Ix-YI small (say Ix-yI 4 co) L is C1, there exists a

unique minimizer in (43) or (43') 0and

(44)(- f 2 L(Xy)) -a j(X)t1)M

V (1L(X,y)) - a11 (x)(x -Y~) CIx-Y12

With these notations, we introduce the following assumptions:

-- "tA L(x,y)) - n(y,t,-AV L(x,y)),
x y

- (t.fx-yI +* jx-yI) for x,y e fIx-yj small, A~ 0, ItI 4 R

where w (a) O if 8 0+1

(46) a A > 0, H(x,t,p) - (x's'p) AM~(-8), Vx e 11, Vt )0 a. p e I

Ws then have the

Theore i1, 1) thiqueness. Assume that H satisfies (46). Let u, v e C('5) be

Lrespectively viscosity subsolution, reap. supersolution, of (1) - (5), reap. (1') -(5).

In addition assume that either (45) and (22) hold, or uWor v) e W1() In both cases,

-21-
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(29) holds.

2) Existence. Assume that R satisfies (46) and that either (45) and (22) hold or (31)

holds. Then there exists a unique solution u e C(5) of (1) - (5).

Rlsmarks: i) Analogous results holds for the Cauchy problem. One just makes similar

uniformly in t e 10,T] (replacing A , 0 in (46) by X ) -e). in addition, we may

consider as wll vector fields depending on t.

ii) we could treat in a similar way more general boundary conditions such as

- + f(x,u) -0 on SQ

where f(x,t) e C(OO 2 3) is nondecreasing with respect to t.

iii) Of course, when (31) holds, the solution u belongs to Wl(D. And If N

satisfies (3S), (36), one may prove that u e CO'O(f) where 6 depends only y, 0, C1 ,

C2, X. In particular 6 - I if A is large.

iv) Clearly if Y - n, choosing ai,(x) - 6i, we find d(x,y) - Ix-yi, L(x,y) = t Y12

and (45) reduces to (20).

Proof: The proof of this result is very much similar to the ones of Theorems 4 and 6. The

uniqueness is proved using *6 (x,y) e cl( &) satisfying for Ix-yI 4 - C. 0 -

1 .__1 L(x,y), - 0 if Ix-yj ) C, 0 4 0 < 1 if x 0 y. We then observe that in view
2C 226

of (44)

(VxL(x,y), Y(x)) aij(x)y j(x)(xi Y) - clx-y
,2

) (n(x), x-y) - clx-Y, 2 ) -(C4C 0)lxY
2

for x e 32, y e , 1x-y1 small. This allows us to mimick the proof of Theorem 4.

For the existence, we also observe that replacing Ix-yly  by L(x,y) '2  we obtain

exactly as in the proof of Theorem 6 estimates on the modulus of continuity of a solution

u of (1) - (5). Therefore, we just have to show uniform W '(2) estimates on the

solution ue of

-22-
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.V 7p . -7

-tAu +*N(x,u *D )0 in A, 0on an

where R is smooth, Lipschitz in (x,tp) and satisfies (46). Again, this is achieved as

in the proof of Theorem 6 using the ideas of T L. Lions (30), (3111 if v C2  ), 0

then

(g,,2iv IC CVvj + 2a (:kv)A v

C CI"v1
2 

+ 2aiV) p ( r'A

I C -v12 + 2 v v.

where C denotes various constants independent of v. If we choose gij(x) * (aij(x))"

we obtain qijni Y and thus

(qjavVjV) ( Clvj
2 
CC(gijyiv v)

This allows us to argue as in the proof of Theorem 6.

In fact, it is possible to extend Theorem 11 (and Theorems 6, 9, Corollary 7) by

considering the distances relative to 0 i.e.

L'(x,y) - inf((
1 
ai(Ft))l I dt I e e CI[[O,1],Rt),F(O) - y. (1) - x0 ij i i

F(t) e vt e •o0,11 .

Replacing L by L' in (45) enables us to get rid of (22)1 on the other hand checking

(45) then become difficult.

VI. Applicatione to optimal control and differential games.

We begin with optimal control problems of reflected deterministic problems: let A

be a metric space, we consider systems whose state is governed by the solution Xt  of the

following ordinary differential equation with reflection on the boundary

Xt  x + -bX s a  " -f y(XdA for t) 0".. ..- :;

(47) ith X e n, Vt ) 0, At is continuous, nondecreasing and

t 12 (X )d 5  for t > 0

-23-
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here and below a is the control process i.e. any measurable function from 10,-[ into

A. Heuristically, this dynamic problem corresponds to a usual controlled ordinary I
differential equation (with dynamics determined by b(xa)) while Xt  lies in 9, when

Xt  crosses 3U Xt  is "pushed back in ii" alonq the direction y(Xt ) with a "force"

dAt. This is one way of realizing state constraints (here xt e a Vt > 0) by specific

boundary actions on the system: the above one is probably the simplest possible.

Provided convenient Lipschitz conditions on b are assumed (see below) problem (47)

admits a unique solution (XtA t ) - see for instance [33]. We then introduce the cost

function and the value function

(48) J(xat) f: f(Xt Q t)eAdt, vx e

(49) u(x) = inf J(x,at), Vx e .
at

where the infimum is taken over all possible control processes. We will assume that

X > 0 and that f, b satisfy

lbx,a) - b(y,a)l , clx-y, Yx,y e 0, e A .

(50) jb(x,a)I + tf(x,a)l - c,vcx,a) e x A; b, f are continuous on 'x A

lflx,a) - fly,a)j 4 Cm(lx-yl), Vx,y eC, Va e A, and m(t) + 0 as t + 0 +

The above control problem is an infinite horizon problem; we could treat as well time-

dependent finite horizon problems (which in some sense are simpler but involve heavier

notationsi).

The usual argument of dynamic programming yields that ,

(51) u(x) - infI f(X "e d u(X, dls, + Vx e 5
at

where t > 0 (we could even choose t depending on the control process). In addition,

u e C(a). Both statements are proved exactly as in P. L. Lions (251 (see [29] for a

proof); let us just mention that the continuity is easily derived from the following

in: let X1, X2 be two solutions of (47) corresponding to x1, x2 e 0 and let

aij(x) be the matrix introduced in the preceding section. We consider e c (a) such-

that - 1 on an, and we setRY

-24-
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1 2o

= exp t(,x ) 2)1 for t ) 0

where N is to be determined. Then for t ) 0

d:: dt (a (y + .13(X))(Xt t x)ixt - X) ]

2Cd -j -

C 1)1: X dt - IwIx. X (d + dAt +t t t 2 t t ,

where e: D, we ace that the last two terms may be bounded by

2 - X 1 2*t(dAt

*tei i t t t

Therefore, choosing K large enough so that: MV N C + 2C0 , we deduce easily from

Granwalls lama that

IX - x2 2  Ce x - x2 1 vt 0 0

where A depends only on the Lipschits constant of b and on 0, y.

Once we have the continuity of u, the following result is to be expected

Theorem 12: Assume (50). Then the value function u e Co) and u iAs the unique

viscosity solution of (1) - (5) where the Hamiltonian H(x,t,p) is given by

(52) H(x,t,p) - sup [-b(x,e).p - f(x,a)] + Xt

Furthermore, we have

Vx e 3a, A e D+u(x) (rosp. VC e D-u(x))

53) 
.-1

sup[-b(x,*). + (blx,a),n(x)) (Y(x),n(x)) (Z,Y(x)) - f(x,a)] + Xu(x) ( 0

(resp. ) 0)

Proof: We already know from [25] that since u satisfies (51), u is a viscosity

solution of (1) in 0. Hence, we just have to check that u satisfies the viscosity

properties on 30. 7b do this, we will first check (53). We will only prove the case

when x e 0, C e Du(x) (the other case being simpler). Let # e c 1(a), (x) u(x)"

-* .

* *,

-25- 
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V#(x) - F, <(y) < u(y) for y e 0, y V x. Following the proof in 1251, we deduce from

(51)

#(x) ) inf(f f(Xa,% )e-Xds + #(X )Wit), V ) 0

"t  %

*% And we deduce easily as in [25)"1 *

( 1*,, r 1 t1t

sup{-(, fto b(x,u)do) +(, f y(X )dA t- 0 f(xua)ds)
(54) at

+ Xu(x) )-E(t) + 0 as t 0 0+

In addition, from the results of P. L. Lions and A. S. Sznitman (331 we obtain

(55) 0 C dA t 4 (b(Xt ,at ), n(X t )) +1-X ),Y(X ) 
1
dt

Now if (C,Y(x)) ? 0, it is easy to deduce (53) combining (54) and (55). On the other

hand if (C,Y(x)) < 0, we argue by contradiction and we assume that there exist 6 > 0,

a e A such that

(53') -(b(x,c),&) + (b(x,a),n(x)) +(n(x),Y(x))-l (,y(x)) - f(x,a) + Xu(x) C - 6 < 0 .

We may assume that (b(x,a),n(x)) > 0 since if this is not true (54) and (55) easily yield

a contradiction. Now, if we choose at  x, and if Yt is the solution of{ t b(Yta) - (b(Yt,a),n(Yt))(n(Yt),Y(Ytll'WY(Yt), t ) 0

then Yt e 30 for all t ; 0 and setting a ft (b(Y*aQ),n(Y ))(n(Y ),Y(Y ))-d we

see that Bt is increasing for t small and thus by the uniqueness of the solution of

(47) we have for t small: Xt - Yt, At = Bt. Then, (53') yields for t small E -

-(E,b(x,c)) + (E, ! f (X)dA) - f(x,a) + Au(x) < --

and this contradicts (54). Therefore, (53) is proved.

To prove (39), we consider x e 39, C e Deu(x) and we introduce X0(0) = sup(A ) 0,

+ An(x) e 6+u(x))t recall that if X0 () < - then H(x,u(x), t + X0(C)n) 4 0. There-

fore we may assume that X (4) > (C,y(x))-(n~x),y(x)) -A . Of course, if (E,y(x)) N 0

i.e. A1 - 0, then (53) imediately yields (39). Now if (&,y) < 0, we observe that

C l + An(x) e D+u(x) and using the fact that u is a viscosity solution of (1) one deduces

from the extension technique to the boundary of M. G. Crandall and P. L. Lions (91,

-26-
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M. G. Crandall and R. Newcmb 114] (see also [27])

sup[-(b~x,aL),t + )X1n(x)) - f(x,a)/* e At (b(x~a),n(x)) 4 0] Au(x) 4 0

on the other hand, (53) yields

sup [-b(x,cL).- (b(x,a),n(x)) X M(3)) + )Au(x) C 0
deA

Combining these two inequalities we conclude.

We now turn to differential games: we will consider differential games for reflected

.7' - processes and we will use Elliott-Kalton's formulation [151, [161, thus following the

approach of L. C. Evans and P. E. Souganidis (18]. let A, a two compact metric spaces, we

will controls and strategies for both players by

A - (aL measurable from [M-1 to A)t

B {0( measurable from [0,-( to B)
-. t

*A - (M :D B A, 4 nonanticipating)

- (0 : A +n, B nonanticipatinq)

where a nonanticipating means: at[R ) =a[oB 21a.a. on [0,T] if B0 t 0 a... on

10,T). For at e A, o en (romp. Ot e 9, a e A) we define the state of the system by

the solution of

-t x + ft b(X5 1 5 B(1ds- y( d

X e 5,vt -N ot is continuous, nondecreasinq on 1[1

- ft l3Qj(X )dK5  for t ;P 0

(reap.

-x + ftb(X '0[1 1,0)do ft 'V(X )d5j,

Ye QIvt 0, L is continuous, nondecreasinq on [0,[(

=~~ ~ f~ l( L for t )0 0

We next define the upper value and the lower value functions by

-27-
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u~x =sui06 f f (XtCgato (at])at Vx e a

a t. -e,

U sx) inf oup fo f(Yt't eBt)e),tat vx e .
tt

OeA ateA

And we assume the analogue of (50) on f(xu,B), b(x,*,O). Combining the methods .

introduced above and those of L. C. Evans and P. 3. Souganidis [181 we obtain

Theorem 13: The value function u, u e C(0) and are the unique solutions of (1) - (5)

where H is given respectively by

H (xt,p) - sup inf [-b(x,a,B).p - f(x,a,o)] + At .

H2 (x,tp) = inf sup [-b(x,a,0).p - f(x,a,P)] + At
OeB ae~k.".-

Furthermore, u, u satisfy the analogues of (53).

VII. Eryodic problems.

In this section we consider an Hamiltonian R(x,p) satisfying

(31') H(x,p) 4 as 'p1 - 4-, uniformly in x e A

(and H e c(d x 0?5). Let y be a vector field satisfying (6). We know from the

preceding sections there exist unique viscosity solutions u e wI'm (a),

u e wI"(Q x ]0,T((VT < w) of

(56) (x,Du) +u = 0 in a 0 on 30

a u Bu( + H(x,Du) = 0 in A x ]0,-[, - - 0 on a x ]0,m(
(57) t3

u(x,O) - uO(x) in '

where u0 e w (0) (for example).

We want to explain in what follows the behaviour of cu , uc as c goes to 0, or

u(.,t), - as t goes to +ft.
't

-28-
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Theorem 14: Under assumption (31'), :: converges uniformly to the unique uO e a such

th t there xist s v 0 C(Q) vi cosity solution of 
-

(58) H(x,DV) + u 0 - 0 in Q, a- 0 on o r s

In addition, ifx 0 U h4, v. u¢ - u (x 0 ) is bounded in W (0) and any convergent sub-

sequence of v (in C(C)) converges to a viscosity solution of (58) satisfying

1
v(xO ) - 0. Furthermore - u(x,t) converges uniformly on 2 to u0  as t 4w.

lMostrk es 1) W e do not know if v e conv rges.

i) in general, there is no uniqueness of solutions of (58) even up to the addition of a

constant. indeed, consider H(x'p) - I!- + .  Then clearly u0 - 0 and v B 0 is a

solution of (52). But so is any C (0) function v satisfying: IDvI ( 1, w - 0 on

ao.

iii) Similar ergodic problems are considered in F. Gimbert [211, J. M. Leery (241. P. L.

Lions and 3. Perthame (32] but they all involve elliptic equations or inequalities.

iv) If we keep the notations of the preceding sections, assuming that H(x,p) is given by

one of the formulas in Theorems 12 - 13, we obtain the following formulas for u0

U0  lit € inf J lt otdt

(reap.

tC

-O lisa SU infsu fo f(t a(tle t)a tt
6#0 " a 06

t

(0 rom li 9 

"-"u 
o M t aot1 0 e t

lim iff f(X-

(resp. G. ,'

" linm sup inf t f(xt'atSrst))dt

T0  €0 tn aa-..

-f lim mn sup 0f f(Xt.atl'Ot)dt)
a 0 t
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Proofs t y a straightforward ue of the comparison result (Theorem 6) we see that

u! 4- IN(x.O)1o in •

Then using (56) and (31'), one deduces

1o uI (c in 0

(in viscosity sense) and thus v is bounded in w'(2). Now, if for same sequence

e -; 0. It cnue converge uniformly to v, u0  clearly uO does not depend on x b.
n n

and by the stability results for viscosity solutions v Is a viscosity solution of (58).

To prove the uniqueness of Uo: we argue as follows. Let uO, _u e R be such that

there exist v, v viscosity solutions of (58) corresponding to uo, u0  respectively.

Since v, v are clearly defined up to a constant we may always asam if U0  U0  '

U0 <U 0  v < I in .

Thus, for e mall enough so that u0 - v < u0 -ev on , we se that v is a

viscosity supersolution of

H(xDV) + U 0 + ev =V in 0, TV 0 on 30

Since v is clearly a viscosity solution of this problem, Theorem 6 yields that v ) v

and this contradicts our choice. Thus u0  is unique.

au O
Finally, observing that , Is bounded on 0 x J0,m!, ws see that D., a are

Stat

bounded on 0 x 10,m[. Next, we consider w(x,t) = u(x,t) - u0 t: w is a viscosity

solution of

3w = [ 0t + H(x,Dw) + uo  o in 0 x 10,-[,.T- 0 on agz x 1o.-[, wlt-o u '

On the other hand, if v Is a solution of (58), v * C are respectively viscosity super

0
and subsolutions of this problem and they satisfy for large C: v + C 0 u • v-C in 0.

Thus, by the comparison results, we deduce that w e w1
'( x ]Of[). In particular1 1

u(xt)- u0  - w(xt) + 0 as t * - in C(M') •

-30-
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